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Abstract

An elastodynamic conservation integral, the Jk integral, is employed to

derive boundary integral equations for crack configurations, in a direct and

natural way. These equations immediately have lower order singularities

than the ones obtained in the conventional manner by the use of the Betti-

Rayleigh reciprocity relation. This is an important advantage for the

development of numerical procedures for solving the BIE's, and for an

accurate calculation of the strains and stresses at internal points close to

the crack faces. For curved cracks of arbitrary shape the BIE's presented

A here have simple forms, and they do not require integration by parts, as in

the conventional formulation. For the dynamic case, the unknown quantities

are the crack opening displacements and their derivatives (dislocation

densities), while for the static case only the-dislocation densities appear

in the formulation. For plane cracks the boundary integral equations reduce

to the ones obtained by other investigators.
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1. Introduction

Boundary integral equations, in conjunction with the boundary element

method, provide an effective numerical technique for the solution of

boundary value problems in solid mechanics. The boundary integral equation

method (BIEM) has been successfully applied to a wide range of problems in

linear and nonlinear elasticity. Recent developments of the boundary

integral equation method have been concerned with applications to

elastostatic and elastodynamic crack analysis. The method is attractive for

crack analysis, because the semi-analytical nature of the BIEM makes it easy

to take into account the singularities at the crack tips.

The conventional BIE formulation, due to Rizzo (1967) and Cruse (1969),

is based on the Betti-Rayleigh reciprocity theorem for two independent

elastostatic or elastodynamic states. By choosing one of the states as the

unknown field and the other as the basic singular solution (the Green's

function), a representation integral for the displacement components can be

derived. The integral, which is over the surface of the crack contains the

crack opening displacements (the displacement jumps across the crack faces)

and derivatives of the Green's function in its integrand. Unfortunately, a

direct limiting process on the representation integral for the displacements

as the observation point approaches a crack face, gives rise to a degenerate

set of BIE's, as shown by Cruse (1975). This has motivated the use of

representation integrals for the tractions, and their corresponding boundary

integral equations, rather than displacement BIE's. Such traction BIE's

are, however, highly singuliar, and they cannot be solved directly by

numerical methods. To circumvent these difficulties several approaches have

been proposed, see for example the papers by Cruse (1975,1987), Weaver
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(1977), Budiansky and Rice (1979), Schmerr (1982), Sladek and Sladek (1984),

Nishimura and Kobayashi (1987), Zhang and Achenbach (1988) and Budreck and

Achenbach (1988). Most of these studies first reduce the higher order

singularities to integrable ones, and then solve the modified BIE's

numerically. The reduction is achieved by the use of partial integration.

The required manipulations are reasonably easy for simple configurations

such as 3-D planar or 2-D straight cracks, but they become cumbersome for

-- " curved cracks. Furthermore, different forms of the regularized BIE's are

obtained through the non-unique integration-by-parts process, though they

are equivalent (see Cruse, 1987).

In this paper we present a new BIE formulation for crack analysis. The

motivation for this study is the paper by Hu (1987), who proposed a novel

way to obtain a new type of B!E, to solve elastostatic beundary value

problems. Hu's formulation is based on the conservation integral J k' In

- .the present paper it is shown that Hu's BIE's are especially suited for

, solving crack problems. For elastodynamic problems, the J integral of
k gao

elastostatics is generalized to time-harmonic elastodynamics, and the result

is denoted by J Boundary integral equations are then derived from k in a
k' 'k

direct and natural manner, for arbitrary crack configurations. The BIE's

p that are obtained are immediately less singular than the ones of the

conventionpl formulation, and they do not require additional manipulation in

% developing numerical solution procedures. The BIE's presented in this paper

nave t'lltively simple forms, and they reduce to those for elastostatics by

letting w. 0 and by using the appropriate stitic Kelvin solutions. For

planar and straight cracks the results agree with those obtained by other
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authors. New BIE's derived from the complementary conservation integral Jk

are also given, but these equations do not offer advantages over the

conventional formulation.

The significance of Jk (or ik ) integral as a relevant crack-tip

parameter in linear and nonlinear fracture mechanics has been well

established (see Moran and Shih, 1987). The present paper presents a novel

application of such path independent or conservation integrals in

elastodynamic and elastostatic crack analysis.

2. Problem Statement and Conventional BIE Formulation

A crack is a surface of displacement discontinuity when external loads

are applied to the body. The faces of a mathematical crack are

"5.4 infinitesimally close prior to loading, and they do not interact when loads

are applied. This is an acceptable approximation for real cracks whose

faces are initially sufficiently separated so that the faces will not touch

when the body is disturbed.

In this paper we consider a three-dimensional (curved) crack of

arbitrary shape which is contained in an unbounded, homogeneous, isotropic,

linearly elastic solid. The geometry is shown in Fig. I. The solid is

subjected to time-harmonic motion, but the term exp(-iwt) has been

% suppressed throughout the analysis.

The stress equations of motion are given by (see Achenbach, 1973)

ai. " + pW 2u. - 0 (2.1)
ij J

Le _ Z-. . - A%- ' *5 '
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where a..j defines the stress components, u. denotes the displacement

components, p is the mass density, and w is the angular frequency. In

Eq.(2.l) body forces are not considered and the summation convention is

implied. In the linear theory the strain components are defined as

f (u +u ) . (2.2)

The stress and strain components are related by Hooke's law

a ..- C ,- C U (2.3)

where C are elastic constants which for isotropic materials can be
ij k,

written as

C A 6 + A(S 6 +i . (2.4)
ij k1 ij Md ik p U j

Here and j are Lame's elastic constants and 6. is the Kronecker delta.

th c rackne n d A is the ha dow de si d Alo ni s t an unit orequncy veton o

TAle In vns n theofaceheoftthe cakne.,

fai .n.-k , k , (2.5)

., - = 6 +p6 + k 24

-"-'-'i here A an + ae Fore' ea scationgtnt prole A.is the insonfedkesdeltof

["The crackiand anisho the a e. Alsoe crck i teuioml etro

'p.
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The total fields generated by the interaction of an incident wave with

the crack can be written as

in sc in scu. - u. + u. , a.. - a .. + a. (2.6)

in inwhere u. and a.. represent the incident field in the absence of the crack,

sc scand u , a.. define the scattered field. Both the total fields and the

partial fields satisfy Eqs.(2.l)-(2.3). For a given incident field the

scattered field has to satisfy the boundary conditions on the faces of the

crack, Eq.(2.5).

Following the procedure proposed by Rizzo (1967) and Cruse (1969), a

representation integral for the scattered displacement can be obtained by

using the Betti-Rayleigh reciprocal theorem and the fundamental solution due

to a unit time-harmonic point force. For a 3-dimensional crack, the

representation integral can be written as

sc( =A G A_ . (2.7)

G

Here x is the position vector of the observation point, a Gj(x-v) is the
ijk - -

stress Green's function (Appendix A), and Aui(Q) defines the displacement

jumps (crack opening displacements) across the faces of the crack.

As shown by Cruse (1975) for the static case, Eq.(2.7) will lead to a

degenerate BIE formulation as x - A. A natural remedy for this difficulty
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is to use the representation integral for the traction components, which can

be obtained by substituting Eq.(2.7) into Hooke's law and by using

sc sc
'f - a n The result is

p Pq q

f sc (x)- C nq(X) J+ kG,(x-Y)Aui(Y)njdAy), x A(2.8)
p - pqkl q A j,,

Boundary integral equations can be derived from Eq.(2.8) by letting x

and by applying the boundary conditions (2.5). The system of boundary

integral equations that is obtained in this manner is, however.

hypersingular when the observation point x and the source point y coincide,

Gsince the terms aijk. (x-y) behave as (Appendix A)

2 2-Dao - as r-* , (2.9)

where r - . These higher order singularities prevent a reliable direct

numerical solution of Eq.(2.8).

To overcome these difficulties Budiansky and Rice (1979) used partial

,$ integration to reduce the higher order singularities, and to derive a system

V-1 of BIE's for a flat crack in the plane x3 - 0 (see Fig. I). Regularization..

V ~procedures have also been proposed by Sladek and Sladek (1984), by Nishimura

and Kobayashi (1987), and by Budreck and Achenbach (1988).

WkI
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For a two-dimensional crack configuration, analogous formulations have

- i been proposed by Tan (1975), by Schmerr (1982), and by Zhang and Achenbach

(1988). The corresponding elastostatic crack analysis using BIE methods has

been presented by Cruse (1975) and Weaver (1977). A comprehensive

discussion and an extensive list of references has been given by Cruse

(1987).

All the studies mentioned above have used partial integration to reduce

the higher order singularities (2.9). This procedure is easily implemented

for flat or straight cracks, but it becomes quite cumbersome for curved

cracks. In this paper, we will present a new BIE formulation which follows

0 very naturally from a path independent integral, and which has lower order

singularities than the ones obtained in the conventional BIE formulation.

3. The Jk Integral and Related BIE's

In elastostatics the Jk integral has the form (Eshelby, 1951, Rice,

1968)

Jk - (WS jk "ijui )nj d S  (3.1)
S

where S is the surface of a body with volume V, n. is the outward normalJ

vector, and W is the elastic strain energy density

I W i (3.2)

20
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The integral Jk' which vanishes if there are no body forces and

singularities present in V, is usually referred to as a path independent

integral or a conservation law. The application of the Jl component as a

relevant crack-tip parameter in linear and nonlinear fracture mechanics has

been well established (see Moran and Shih, 1987). It can easily be shown

that Jk 0, by applying the divergence theorem, by using

a aW (3.3)
.j a 8 J

and by employing the equilibrium equations .. .- 0. The generalization of

Jk to time-harmonic elastodynamics, which is denoted by J k' can be written

as

- [(W+L - a..u. )n dS (3.4)(Wt)jk j .uknd
S

where L is the kinetic energy density

L - 1 pu i. - u (3.5)
2 .i 2 pw iu

Here also Jk - 0, under the same assumptions as for Jk" The proof is again

very simple if we apply the divergence theorem, use Eq.(3.3) and employ the

-Nw

S%
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equations of motion (2.1). We note that J k 0 holds for any time-harmonic

elastodynamic state which satisfies Eqs.(2.1)-(2.3).

Now let us consider two independent time-harmonic elastodynamic states

for the same body:

". u(l) f(() ()3.6)" 'J'" i i ij ' ij (3 6

u (2) (2) (2) (37)

These states satisfy the equations of motion (2.1), the strain-displacement

equation (2.2) and Hooke's law (2.3). By virtue of linear superposition,

the sum of (3.6) and (3.7)

(1) (2) (1) (2) (1) (2)
u i iiu +u - +.. .. = a. +a.. . (3.8)

also satisfies Eqs.(2.1)-(2.3). Substitution of (3.8) into (3.4) yields

Jk[U Jk[ul)] + [u(2)] + f [(u(l) (2) Pw2u(l)u(2)

*k i k i k i m,n mn 1 1 jk

P (1)a(2) (l) (2)]nd(39u.ka., - u. ]n.dS .(3.9)

., k ij ij i,k j

'O, "

%' % %
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(1), -(2) (1) (2)( 2
11r Clearly, the terms Jk M] an i ]2 must vanish because u

( ) and u ( 2 )

are two independent elastodynamic states. Since J ui] - 0 we therefore
k i

conclude that

[ (1 )~m n(2 )  u ) - u. k a..)a 2 )]n dS - 0 . (3.10)
[( m jk i., kij ij 'i,k ]njd 0 (.0

Equation (3.10) is an extension of the two-state conservation integrals

proposed by Chen and Shield (1977) for elastostatics (w - 0). The first

*state is now taken to be the unknown field

(1) (1) sc sc
u ij 1-{u. ,aiA , (3 11)

while the second state is selected as the fundamental solution due to a unit

point force

S ..-

(2) (2) C C
( U , a = {uie a,, j a, (3.12)

G G
where ui2 and a are 3-D time-harmonic elastodynamic Green's functions

(see Appendix A), and a indicates the directions of the applied point

S. force. Application of (3.10) to the surfaces S, S and S (Fig.2), and use
-6 R

.P'-. of the Eqs.(3.11) and (3.12) results in

'."%

":: 24



-f I2k(X;v)dS(v) + I i k(x;y)dS(y) + I 2k(x;y)dS(y) - 0 , (3 .1 3 )
S S SR

V where S is the surface of the scatterer, S is the surface of a sphere ofS

radius 6, centered at x, and SR is the surface of a sphere with radius R,

centered at x, as shown in Fig. 2. The surface S is assumed to be closed,

regular and smooth. The small sphere (radius 6) is selected to exclude the

singularities in the Green's functions, and the sphere with radius R must be

sufficiently large so that the scatterer S and the sphere S6 are included in

* it. The integrand I)k in (3.13) is given by

sc G 2 sc G: I l~(XIV) ( [uS (Y)cGn(X-Y) PU) ui Q)ui (x-Z)]$j

- sc G sc Gu. (v)a.. (x-v) a k( X-))nj (3.14)•,'.-I,k I- J2 -- 1i~ ~ i,,k

in which x represents the position vector of the observation point, and v

represents the position vector of the source point, respectively.

• -After elementary calculations the second integral in Eq.(3.13) can be

evaluated as

.- Is 1k(X;z)dS(v) - - Uck(x) , as 6 - 0 . (3.15)

IV
o- *•

0.",

.%...
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By using the asymptotic expansions of the Green's functions for large

' (Appendix B) the last integral in Eq.(3.13) can be rewritten in the

,. following form

ik L  exp(ikLR)

I" kS A+2, 41rR iS scs
R R L ]ni.

n2nkexp(-ik LT'X)dS(Q)

ik T  exp (ikTR ) f ( s n -i k us
A 47rR SR  ij- kT i )

(6i,-n in I)n k)exp(-ikTn-X)dS(X) (3.16)

Applying the Cauchy-Schwartz inequality

Ifs f(y)dS(X)l : (fs dS(X))"(fSRjf(Q)j~dS(X))
h1

2Vn R (fSRjf(V) I=NS()) h ,(317

kR

and considering the following elastodynamic radiation conditons (see Tan,

1975, Achenbach, 1982)

(Appndi B) he ast nteral n E.(3.3) an b rerittn i th
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lI n S I [c"n. -i(A+2Ih)k u C]niI2dS(y) -0 ,(3. 18)
R-Ko R L~ i

lrn is 1(a ijn. ipk u )(6.-n n )I2dS(y) =0 ,(3.19)

R- R T l

we obtain

0. Is R k' 'x'y~dSX - 0 , as R -~(3.20)

* Thus, Eq.(3.13) is reduced to

u2k(x) IS 1 ([uscn(X)cmn2.~ - 2s G2- j

Sc Gsc G
-u. i,k()c7..(x-x) - i.()uU.(x-x))n idS(y)

x S. (3.21)

* Substitution of Eq.(3.21) into Hooke's law leads to the following

representation integral for the traction components at x

p - pq2kttq(-x IS(ucnVmn l-

N.

,

% . 2

V0,: A
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Equation (3.22) is a generalization of Hu's results for elastostatics

(1987).

Application of Eq.(3.22) to a 3-D crack yields

pfSCx (x) + f[AUm n(D)OGmn - Gi)uT2(x-x) 6jk

p CqInq-+

Au~ k)aj. (x-y))n dAQ) 4 A+. (3.23)

where Au. are the crack opening displacements and Au. are their
I" i,k

derivatives with respect to Yk" The last term of Eq.(3.22) disappears

because of the continuity of a. .n. across the crack faces. BIE's are1] J

A+

obtained by letting x - A as

fin (x) - Cp nq(X) + [AUm,n(Y)a G (X-X ) .p 2Aui() G
S pqkq A [u mni - 2 (-)'jk

4A

G _ +

Au (Y)ai(x-y)}njdA() ,x E A. (3.24)

The integral of (3.24) is understood in the sense of Cauchy principal

. +

values. No extra discontinuity terms enter (3.24) as x A . Equation

(3.24) is valid for a 3-D crack of arbitrary shape. The corresponding BIE's
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for a 2-D crack in plane strain and anti-plane strain can be derived

directly from (3.24). For plane strain we obtain

f ln(x)%n - C n,(x) J+ ([Au,(y)a 7 (x-X) - pW2 Au 6 (y).

iug (x-)] Au , )ag (x-y) nds(y) x e , (3.25)

while for anti-plane strain we find

fin - ([Au 3  (X)ag p3 (xX))]f n -A3Au
3 (Y)u 3 3 (x-y)]8

G , +

Au3 ,0(y)a3 y3(x-y))n ds() , x e r (3.26)

Here r+ denotes the insonified side of the 2-D crack (see Fig. 3) and the

superscript "g" represents the 2-D Green's functions (Appendix A). All

integrals of (3.25) and (3.26) are understood as Cauchy principal values.

The BIE's (3.24) (as well as (3.25) and (3.26)) have the advantage over

the conventional BIE formulation, i.e., Eq.(2.8), that no higher order

singularities appear. The unknown boundary quantities in the new

6 formulation are the crack opening displacements and their derivatives, where

the latter have the physical meaning of dislocation densities. We note also

that the procedure in deriving (3.24) is very natural, and no elaborate

6. manipulations, such as integration by parts, have been used. The BIE's

stated here apply also to elastostatic crack analysis by letting O - 0, and

by using the corresponding elastostatic fundamental solution (Kelvin

solution). For the static case, the term containing Aui disappears in the

O -
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4BIE's, and the only unknown quantities are the dislocation densities. The

new formulation allows an immediate numerical implementation. When Au. has
." %.

.. , 4.' been computed equation (2.7) can be employed to calculate the displacement

field.

As pointed out by Carlsson (1974), Bui (1977), and Moran and Shih

(1987), there exists a complementary integral to Jk which i also path

independent. For time-harmonic elastodynamics, the complementary integral

may be stated as

-4,C

Jk= S [(Wc + Lc)6k - ai kui]nJdS - 0 (3.27)
k__ S j jI

where are defined by the Legendre transformation

"W .-a jci W (3.28)

-4. Lc - Pa L , (3.29)

. and W and L are given by (3.2) and (3.5). The assumptions in deriving

(3.27) are the same as for jk The proof of Eq.(3.27) can be performed

directly by using the divergence theorem, by considering the relation

0c
" .. c (3.30)

:.V.' zJ O ij

4.'

V.

% 's, r. ."N"Y....'. v '[,,.'> ..- • ,, ,' ' , , .e. ', , e . OL/ ,", " " $ ' K'7 '; : > ' ' G \ .? v i ' .i
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and by employing Eq.(2.1).

Following the same procedure as in deriving Eq.(3.22), a novel

representation integral for the scattered traction components fSC(x) is

.. .p

obtained from (3.27) as

--
SC(x)- - C n (x) j {[uSn~y)Gn(X-) - pW.Ui ~yXui,\x-y)] 6 jk

(X C n X)I([ (YaG sc Xu

a sc k(Y)ui(x-Y)-ui (Y) Gj2,k(x-y))njdS(y) ,x S. (3.31)

Corresponding BIE's can be derived by applying Eq.(3.31) to the crack faces

.'-'. and by letting x - A, taking into account of the boundary conditions (2.5).

Such BIE's are, however, again highly singular due to the presence of the

Gterm ai.,k(X-y). Hence, Eq.(3.31) has no advantages over the conventional

formulation given by Eq.(2.8).

4. Examples

In this section we will apply the BIE's (3.24) (as well (3.25) and

(3.26)), which are valid for arbitrary shaped cracks, to some simple cases.

* We first consider a flat 3-D crack in an unbounded body subjected to an

+
incident time-harmonic wave. The crack is located in the plane x3  0- .

Hence nI - n2 - 0 and n3 = 1. The BIE's (3.24) separate into two decoupled

6 ,,

equations:

a in(Xl,X2 0 ) = {[(A+2p)aG 3(x G -Z )  A
33.2' A + aa33a 3) a

9.9.9%
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P2\2A (XA X)dQx e A+ (4.1)

a in(xl~x2.O) - Af ([a~ 1 (~x - a G (~) ]AUay)-

'PW2u G (x.X)Au (y)dA(y), x c A , - 1,2 ,(42

where a3in and a inare stress components corresponding to the incident wave.

We note that Eq.(4.1) is for the normal crack opening displacement Au3 while

Eq.(4.2) is for the transverse crack opening displacements Au .Equations

(4.1) and (4.2) have exactly the same forms as those derived by Budiansky

and Rice (1979) who used the conventional formulation in conjunction with

partial integration.

BIE's for a flat 3-D crack under static surface loading a 33 (xx 2 ',0)

and a 3 (Xlx 0) can be obtained from (4.1) and (4.2) by letting w - 0 and

by employing the corresponding static fundamental solutions. The result is

r
a +C 3(xl~x2,0) - A r2Au,() dA(Q), x e A (4.3)

Cr (xl~x0) ((1-,)[6 6)

03 2 rlv S -



3r, r r )YAU a (X'Y dA() x eA(4 )

Here r - xxand v' denotes Poisson's ratio. Equations (4.3) and (4.4)

are identical to the equations stated by Weaver (1977).

Next, we consider a straight 2-D crack for states of deformation in

plane strain and anti-plane strain. The crack is defined by x 2 -

1xlj < a. For the case of plane strain, the BIE's (3.25) become

a
a in (xI0) -ag ( - ag 2 (x-X)IAU,,(Yj)-

..PW2u 9 (X.X)AU (Y1)1dy,, IxlI a (4.5)

a

-PA2A+ 2ug (X-X)Au (yl))dyl, 1xl1 a ,(4.6)

while for anti-plane strain Eq.(3.26) takes the following form

a
a@in a(X 1 10) ~&f ([a, 3 (x-X)AU 3 1 (y,) -Wu pu 3(X-X)Au (yl)1dyl,

32 ~~-a 33313

IxlI a .(4.7)

'W l K_56 S0' AIj ,
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The BIE's (4.5) and (4.6) have been derived by Tan (1975) via the

conventional formulation. For plane strain deformation, the BIE for the

normal crack opening displacement, Au2 (Mode I), decouples from the one for

the transverse crack opening displacement, Au1I (Mode II). For a 2-D crack

under static loading al2 (X,0 ), a2 2 (x,0), and a32 (x 1,0) we obtain from
'22

(4.5) and (4.6)

a Au
r a 02(XlO) 2 l f - dy1 , 1xl < a (4.8)

22 (x1 2r~-Li) - l

-ft.

a AU".f-' I 1l< a (4.9)
"7rl-I)-a

for plane strain, and from (4.7)

"%"

C ix 1 a Au
- 32(xi,0) " fdy 1Xl1 < a (4.0)

for anti-plane strain. Equations (4.8) - (4.10) are integral equations for

Sdislocation densities, and they are again well known (see Mura, 1987).

.A The BIE's presented here must, in general, be solved numerically.

Special care must be taken in the numerical implementation to account for

5.. the local behavior of Au. and Au. . near crack edges, and for the
* 1. 2.,j

singularities of the Green's functions at x - For 2-D cracks subjected

by static loading the method developed by Erdogan et al. (1973) has been

*%t

• o°
-% .°N
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frequently used, while Zhang and Achenbach (1988) solved the modified BIE's

of (4.5) and (4.6) numerically for time-harmonic wave scattering problems.

For a flat 3-D crack numerical methods have been proposed by Polch et al.

(1987) for the static case, and by Nishimura and Kobayashi (1987) for the

dynamic case.

5. Concluding Comments

A novel application of an elastodynamic conservation integral, the k

integral, to elastodynamic and elastostatic crack analysis has been

presented. Boundary integral equations follow from .k in a direct and

*natural way. These equations immediately have lower order singularities

than the ones obtained in the conventional manner by the use of the Betti-

Rayleigh reciprocity integral. This is an important advantage for the

development of a numerical procedure for solving the BIE's, and for an

accurate calculation of the strains and stresses at internal points close to

the crack faces. For 3-D or 2-D cracks of arbitrary shapes the BIE's

presented here have simple forms, and they do not require integration by

parts, as in the conventional formulation. In the dynamic case, the unknown

quantities are the crack opening displacements and their derivatives

(dislocation densities), while in the static case only the dislocation
S

densities appear in the formulation. Thus, higher order shape functions for

.Au. are desirable in the dynamic case. The complementary conservation

* integral Jk gives rise to more singular BIE's which offer no advantages over

the conventional equations.

I The representation integral for the traction components, Eq.(3.23), can

be used to derive BIE's for general boundary value problems (not necessary

*'d"'k " Aj A-"~ 'L K'Vp
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cracks) of time-harmonic elastodynamics or elastostatics. The advantages

and drawbacks of this approach compared to the conventional formulation have

been discussed in the paper by Hu (1987).

As pointed out by Hu (1987), new BIE's can be derived from other

conservation integrals. Following essentially the same procedure as

described in section 3, the present authors have obtained another set of

representation formulas for combinations of ui(x) and u i,j (x) from the well

known M and Lk integrals (see Knowles and Sternberg (1972), Budiansky and

Rice (1973)). The significance of these representation formulas and their

associated BIE's for solving boundary value problems is under investigation.
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Appendix A: Green's functions

The Green's function for the 3-D time-harmonic elastodynamic state is

given by (see Tan, 1975, Achenbach et al., 1982)

uk(x~v) 1 [exp(ikTr) exp(ikLr)1  exp(ik r)Gi I r '] Ik +  4- T i 6 (A.1i)
rjk X-) ik 4wrpr ik

where

r- Ix - y (A.2)

The function u(x-v) denotes the displacement-in the i-direction observed

at position x due a unit force in the k-direction, applied at position X.

The corresponding components of the stress tensor follow from Hooke's law

G G
a. G C u (A.3)ijk Cijmn mk,n

Similarly, the Green's functions for the 2-D plane strain and anti-plane

strain time-harmonic elastodynamic states are

u g (x-v) i- {[H(l)(kTr) Hl)(k r)] + k 26 H (1)(k r) (A.4"- 4pW2 0 o L T y O T

ug 3 (X-V) - H(1 )(kTr) (A.5)

%~ o
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respectively, where H)()denotes the Hankel function of the first kind
0

* . and zeroth order. Expressions for the stress components can be obtained by

using

- C-uC , for plane strain (A.6)

a3 3  u for anti-plane strain .(A.7)

The Kelvin solution for the 3-D elastostatics case may be written as

1 (X [3-4vi)6 + r r],(A8
uIk\X l61rp (1-i.v) r ik I ,k(A8

* while for 2-D elastostatics we have

ug- 8irpl-v [(3-4v)6 Inr -r ar (A9

ug (xI nr ,(A.10)

33- 27rp

for plane strain and anti-plane strain, respectively. The corresponding

stress components for elastostatics follow from the Eqs.(A.3), (A.6) and

(A.7).

~ ~.-*We note that both the dynamic and the static Green's functions possess

-the same singularities at r -0, namely,

041*
Zc'Le4 ') r
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UG
ik r

C~jr as r- 0 (A.l11)

for the 3-D case, and

ug ~ ug nr
Q,6 33

ag g asr (A.12)
LIp , L 3a3  r } as-
af,, 3a3,B6 r 2

for 2-D plane strain and anti-plane strain. All derivatives in the Green's

* -/ functions are understood to be with respect to

Appendix B: AsyMptotic Expansions of the

Elastodynamic Green's Functions

For Ix! >> lxI, the following approximation holds

r-I-I li xx , (B.1)

where xdenotes the unit vector Llong y. By using (B.1), asymptotic

expressions for the 3-D elastodynamic Green's functions are obtained as

G exp(ik ,Ili)A
U l(xy A (X) 41ry exp(-ik X-x) ,(B.2)

V-, lr%

%
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exp(ik.lXI)
u (-X E ik B k 47 exp(-kXx( x -. L ( .3 )

aljk (X-X) E ik C5jkk 1 expv I~
L,T ~ik w ep-kXx

in which

A ily) yiy/(A2p)(B.5)

A Q() - 6 V(B)

ilk ~ ylk/(A2p)(B.7)

L A A A

B i~k(y) - 6l ilyk' B8

T A A AA

-C Bijk( [2, -i YiY + 12 ) (B.9)

T A 2A A 2 A

ijk ' 6ikyj + 6 jkyi -k 
B.0

%

-4A
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Also, kL and kT are the wavenumbers of longitudinal and transverse waves,

.. respectively.

' ":"For a large sphere of radius R (see Fig. 2), the following relations

hold

,xi R (B.12)

r,k Yk nk (B.13)

where nk is the components of the unit outward normal vector of the sphere.

Substitution of Eqs.(B.2) (B.13) into Eqs.(3.13) and (3.14) yields

Eq. (3.16).

.Wa
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X3

(a)n

X2l

F i. I: Curved crack of arbitrary shape;

(a) x Ix 3-plane, (b) top view.
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Fig. 2: A scatterer in an unbounded solid.
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